RME within the Dutch tradition

Marja van den Heuvel-Panhuizen

Freudenthal Group, Faculty of Social and Behavioural Sciences
Universiteit Utrecht
Freudenthal Institute, Faculty of Science
Netherlands didactic tradition in mathematics education

Mathematics education system
• what is taught to students
• how teachers teach
• what is in the textbooks
• how students are assessed
• how teachers are educated
• how instructional material is designed
• how learning and teaching of mathematics is researched
NL is not a “one state – one didactics” country

Furthermore

- RME is not a fixed and unified theory
 - different accentuations and focus on different groups
 - different conceptualizations of RME
- Large variety in how RME is implemented in textbooks and classrooms
Mathematics in the Netherlands
Mathematics in the Netherlands

as a source context for developing mathematical understanding

Reality

as a target context where mathematical understanding can be applied
Central role of reality is characteristic for RME

but REALISTIC ['zich realiseren'] also means that students are presented problem situations that they can “imagine” and “experience as real”

Realistic

- extra-mathematical contexts
- intra-mathematical contexts
extra-mathematical contexts

“conceptual mathematization” (1987)
intra-mathematical contexts

• relevance of own productions

• presenting problems that have not been taught yet context-based solution ➔ progressive mathematization

• challenging students with (classical) mathematical puzzles (extra-mathematical contexts)

• making use of children’s curiosity and triggering students’ mathematical thinking
working on a mathematical problem yourself
Monica Wijers, Dede de Haan, Pauline Vos, Rijkje Dekker, Harm Jan Smid, Adri Treffers, Marja van den Heuvel-Panhuizen, Marjolein Kool, Mar van Zanten, Koeno Gravemeijer, Wil Oonk, Ronald Keijzer, Joke Daemen, Ton Konings, Theo van den Bogaart, Paul Drijvers, Martin Kindt, Kees Hoogland, Iris van Gulik-Gulikers, Jenneke Krüger, Jan van Maanen, Michiel Doorman, Aad Goddijn, Ed de Moor, Wim Groen, Floor Scheltens, Judith Hollenberg, Ger Limpens, Ruud Stolwijk, Jan de Lange
Reflections from abroad on the Netherlands Didactic Tradition in Mathematics Education

Abstracts

Dutch strand of the “European Didactic Traditions” (16:30-17:30)
2nd hour

- Experiences with RME in...

 - David Webb

 USA

 - Zulkardi & Ratu Ilma Indra Putri

 Indonesia

 - Sue Hough

 England & Cayman Islands

- Critical friends

 - Dirk De Bock

 Belgium

 - Cyril Julie

 South Africa
Driving to Hamburg

Thematic Afternoon

European Didactic Traditions: the Netherlands

Paul Drijvers, Freudenthal Institute
p.drijvers@uu.nl
Driving to Hamburg: schematizing

Distance to O

Distance to B

U 215 O 115 B 110 H
Driving to Hamburg: animation
Driving to Hamburg: model

Problem orientation:
- Starting point in U: \((O, B) = (215, 330)\)
- End point in H: \((O, B) = (225, 110)\)

Model:
- \(u = \) distance to Utrecht (independent variable)
- \(O(u) = \) distance to Osnabruck \(= |u - 215|\) (dependent)
- \(B(u) = \) distance to Bremen \(= |u - 330|\) (dependent)
- \(P(u) = (O(u), B(u))\)

-> So we have a parametric curve!
Teaching experience

- 13-14 year old
- High achievers
- Bilingual stream
Teaching experience
Teaching experience
Conclusion: activity features

What makes this a nice problem?

- Realistic, meaningful context as point of departure
- Unconventional, non-routine problem (no time-distance, but distance-distance graph)
- Different types and levels of approaches and solutions
- Input from students, interaction between students and between teacher and students

These aspects are core in NL math ed tradition. To design such productive tasks is our challenge!
Thank you!

Thematic Afternoon

European Didactic Traditions

Paul Drijvers, Freudenthal Instituut
p.drijvers@uu.nl

2016-07-27
www.uu.nl/staff/PHMDrijvers

Universiteit Utrecht

[Faculteit Bètawetenschappen
FISME Freudenthal Institute for Science and Mathematics Education]
Experiences with RME in the USA

David C. Webb
RME Timeline Global

- **Pre-RME**
 - Hans Born 1905
 - PhD 1930

- **1957**
 - HF: Lincos
 - Language

- **1960**
 - HF: Linco

- **1965**
 - HF: Inst. ICMI grapes

- **1970**
 - Ed Studies in Mathematics started
 - "Why as to teach math so as to be useful"
 - WISDOMAS

- **1978**
 - HF: "Major problems of math education"

- **1980**
 - US Nat. Center for Research in Math. Structures

- **1981**
 - HF's daughter PhD in Math. Structures

- **1982**
 - OW&OC

- **1985**
 - HF died

- **1991-1996**
 - NSF funded, initiated by Romberg

- **1997**
 - MiC funded, initiated by Romberg
 - NSF 1991-1996
RME enters the US
From proof of concept to large scale projects

• Whitnall study → Mathematics in Context
 • de Lange, van Reeuwijk, Burrill et al
• Mathematics in the City
 • Fosnot, Dolk et al
• Statistical reasoning
 • Gravemeijer, Cobb et al
• ARISE/COMAP: Assessment Tasks → Curriculum
 • Garfunkel, van der Kooij et al
• Assessment: RAP → CATCH → BPEME
 • Abels, Dekker, de Lange, Feijs, Querelle, Webb
US Attraction to RME

- Unique context-first approach
- Preformal models and tools
- Robust approach to assessment
Context first approach
1. Consider the bell-shaped (green) curve $g(t)$. What quantity does the area under this curve, between two points $t = a$ and $t = b$, represent? What are the units for this quantity?
1. Consider the bell-shaped (green) curve $g(t)$. What quantity does the area under this curve, between two points $t = a$ and $t = b$, represent? What are the units for this quantity?
Pre-formal models and tools

23
× 18

Two-digit multiplication

20 \times 10 = 200
20 \times 8 = 160
10 \times 3 = 30
8 \times 3 = 24
\[y = (2x + 4)(-3x - 8) \]

\[(x + 3)(x + 2) = x^2 + 5x + 6 \]

\[h(t) = -5t^2 + 3t + 2 \]
A model – how disciplinary knowledge is learned

Disciplinary Principles & Practices

Inferences and Models

Focused Observations and Evidence Interpretation

Experience-based notions
Comprehensive assessment

Assessment Pyramid

Over time, assessment questions should "fill" the pyramid.
5th International Realistic Math Education Conference: September 18 – 20, 2015
Experiences with RME in the USA

David C. Webb

University of Colorado Boulder
Thematic Afternoon: European Didactic Traditions – Netherlands
Wednesday, 16.00-18.00

TWO DECADES OF RME IN INDONESIA:
FROM ICMI SHANGHAI 1994 TO ICME HAMBURG 2016

Zulkardi,
Ratu Ilma Indra Putri
Sriwijaya University
Aryadi Wijaya
Jogyakarta State University,
Indonesia
OUTLINE

- Mathematics reform using RME in Indonesia
- The development of PMRI
 - Initiation
 - Implementation
 - Dissemination
- PMRI growth beyond project
 - Development of a web portal on PMRI
 - SEA-RME Course
 - Founding an Indonesian Journal on (R)ME
- PMRI continues
Math Reform using RME in Indonesia

In 1994, Jan de Lange- Director of Freudenthal Institute presented his keynote in ICMI International seminar, in Shanghai.

Prof. Sembiring saw Jan’s presentation about RME. As Dikti’s team who search what the best math. education to change math. modern in Indonesia, Sembiring invited Jan to come to Indonesia in order to help Indonesia reforming mathematics education.
The ‘culture’ decision of Indonesia to adapt RME to Indonesian context

In 1998, Jan de Lange came to ITB, Bandung visited pak Sembiring. With Prof. Tjeerd Plomp (UTwente) and Annie Kuipper, they conducted a workshop on RME with 20 candidates and selected 6 Ph.D.

Indonesian Government sent and funded the six students to do a Ph.D. research on RME in the Netherlands. The six followed the ‘sandwich PhD Program’ between UTwente and Utrecht University. Finally, they got PhD. on RME in December 2002. All of them are professor. (Prof. Sutarto is also here now!)
THE DEVELOPMENT OF PMRI

<table>
<thead>
<tr>
<th>Year</th>
<th>Reform Movement of PMRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>Initiation: Prof. Sembiring Prof. Jan de Lange in ICMI Shanghai</td>
</tr>
<tr>
<td>1998-2002</td>
<td>Six PhD candidates sent to the Netherlands to learn RME</td>
</tr>
<tr>
<td>2001</td>
<td>Implementation: PMRI is started and Small Project PMRI was started in 3 cities in Java</td>
</tr>
<tr>
<td>2006-2011</td>
<td>Dissemination of PMRI (DO-PMRI) Project funded by Dutch Government about 25 out of 34 Provinces and linked by a Web Portal P4MRI.net</td>
</tr>
<tr>
<td>2008</td>
<td>Starting a Joint Master program on RME-PMRI (IMPOME) among Unsri Palembang-Utrecht University and Unesa Surabaya</td>
</tr>
<tr>
<td>2010</td>
<td>Starting Mathematics Literacy Contest (KLM) and Journal on (R)ME</td>
</tr>
<tr>
<td>2011</td>
<td>Starting SEA-DR Conference on Design Research</td>
</tr>
<tr>
<td>2012</td>
<td>SEA-RME for Teacher from ASEAN countries</td>
</tr>
<tr>
<td>2016</td>
<td>Starting PhD program on PMRI and National Center in Unsri Palembang</td>
</tr>
</tbody>
</table>
Table of contents

1 Introduction to: A decade of PMRI in Indonesia - Robert Sembiring, Kees Hoogland, Maarten Dolk 7

History
2 Towards a democratic future. Interview with six founding fathers - Anneles Gise 13
3 My story of realistic mathematics in Indonesia - Lee Peng Yee 29
4 My involvement with PMRI - Annie Kooiker-Makkink 33

Various Perspectives
5 Realistic mathematics education theory as a guideline for problem-centered, interactive mathematics education - Koeno Gravemeijer 41
6 PMRI: a rolling reform strategy in process - Gerard van den Haven 51
7 Education reforms in waves: the case of PMRI - Boudewijn van Velzen 67
8 Lessons from Sri Lankan primary reforms and Indonesian PMRI. Factors that contribute to the success of classroom reforms - Wilfred Perera 75
9 Summary of PMRI-Majulah! A report of the International Advisory Board of PMRI - Mats Ekhholm, Gerard van den Haven 85
10 Realistic mathematics education in a project approach - Tjoj Koen Yap 89

In practice
11 PMRI's journey in Surabaya - Siti Amin, Gato Sutonjo 93
12 PMRI on Bali. Respectfully dealing with differences - IWayan Sada, S. Sariyasa, Martin van Reeswijk 103
13 PMRI in Aceh - Rahmah Jihar 115
14 The role of key teachers in PMRI dissemination - Sutarto Hadi, Maarten Dolk, Ellen Zonneveld 123
15 Local workshops in PMRI: learning from experiences - Didi de Haan, Meilasari, Pepinta Sari 131

Themes
16 Quality assurance in PMRI. Design of standards for PMRI - Sutarto Hadi, Zulkardi, Kees Hoogland 153
17 The development of learning materials for PMRI - Siti Amin, Hongki Julie, Fokke Munk, Kees Hoogland 163
18 Examining teachers' role in relation to their beliefs and expectations about students' thinking in design research - Maarten Dolk, Wandy Widjaja, Ellen Zonneveld, Ahmad Fauzan 175

The future of PMRI
19 The future of PMRI - Robert Sembiring, Sutarto Hadi, Zulkardi, Kees Hoogland 189

Repository
20 Repository of recent PhD, Master's, and Bachelor's research in Indonesian mathematics education - Annyi Widjaja, Al Jupri 191

Annexes
1. List of acronyms 215
2. List of contributors and affiliations 217
3. List of references 219
A decade of PMRI in Indonesia:
Story form some chapters

1. Introduction to:
A decade of PMRI in Indonesia
Robert Sembiring, Kees Hoogland, Maarten Dolk

5. Realistic mathematics education theory as a guideline for problem-centered, interactive mathematics education
Koen Gravemeijer

3. My story of realistic mathematics in Indonesia
Lee Peng Yee

19. The future of PMRI
Robert Sembiring, Sutarto Hadi, Zulkardi, Kees Hoogland
THE ACTUAL INFRASTRUCTURE OF PMRI (Sembiring, et.al, 2011)

1. P4MRI ACEH
2. P4MRI ULM
3. P4MRI UNY
4. P4MRI UNESA
5. P4MRI Unsri
6. Impome (Master PMRI)
7. KLM
8. Sea-DR
9. P4MRI.Net
10. Journal (R)ME
11. Indome (Dr. PMRI)
THE THIRD SOUTH EAST ASIA - DESIGN/DEVELOPMENT RESEARCH (SEA-DR3) INTERNATIONAL CONFERENCE 2015

Theme: "Design/Development Research for Creativity in Education"

Image: Ampera Bridge and Musi River in the center of Palembang city

SEA-DR Conference will be conducted by Master Program on Mathematics Education Faculty of Teacher Training and Education Sriwijaya University (UNSRI) Palembang, April 18th–19th, 2015.
University of Utrecht (UU) in cooperation with Surabaya State University (Unesa) & Sriwijaya University (Unsri) Establishes International Master Program on Mathematics Education (IMPoME) In 2010
Example of research using PMRI

1. Counting orally during Gasing is moving
2. Students count orally in conjunction with the movement of clock hand

... 23, 24, 25, 26, ...

Position of clock
3. Counting the strip and the space of the strip of second interval on the clock
Prof. Subanar, Ph.D., Director of the Southeast Asian Ministers of Education Organization - Regional Centre for Quality Improvement of Teachers and Education Personnel in Mathematics (SEAMEO QITEP in Mathematics), officially opened a three-week course on Southeast Asia Realistic Mathematics Education (SEA-RME) for Junior Secondary School Mathematics Teachers on October 8, 2012, in the Auditorium of PPPPTK Matematika, Yogyakarta, Indonesia. The course ran until October 28, 2012. The opening ceremony was also attended by Prof. Masami Isoda from University of Tsukuba-Japan, Prof. Allan L. White from the University of Western Sydney-Australia, and Prof. Sutarto Hadi from Lambung Mangkurat University-Indonesia.
Scores PISA Mathematics of Indonesian Students in Year 2000 to 2012
(Wijaya, 2015)

Four types of errors in solving context-based problems:

- Comprehension: 38%
- Transformation: 42%
- Mathematical processing: 17%
- Encoding: 3%

Conclusion:

IDN students’ mainly have difficulty in comprehending a context-based problems and in transforming them into mathematical problems.
Kontes Literasi Matematika-KLM (A national contest on Mathematics Literacy)

- Since 2010 in Unsri Palembang
- Since 2015 at 12 Teacher educations in 11 provinces in Indonesia
- A workshop on PISA for teachers is also conducted
- Followed by thousand students
- Three levels of contest:
 - Qualification: Written Test (level 1, 2 and 3 PISA tasks)
 - Semi-final: Written test in the white board (level 3 & 4)
 - Final: Presentation (HOTS level 5-6 of PISA)
Web blog PISA Indonesia
(www.pisaindonesia.wordpress.com)
New Math Literacy book including PISA actions in Indonesia (Stacey & Turner, 2015)

14 The Effects of PISA in Taiwan: Contemporary Assessment Reform Kai-Lin Yang and Fou-Lai Lin

15 PISA’s Influence on Thought and Action in Mathematics Education ... 275
Kaye Stacey, Felipe Almuna, Rosa M. Carabello, Jean-François Chesné, Sol Garfunkel, Zahra Gooya, Berinderjeet Kaur, Lena Lindenskov, José Luis Lupiáñez, Kyung Mee Park, Hannah Perl, Abolfazl Rasiepour, Luis Rico, Franck Salles, and Zulkardi Zulkardi
FUTURE OF PMRI: CHALLENGES

• LOWEST PISA SCORE & HAPPIEST IN THE SCHOOL
• SUSTAINABLITY OF PMRI INFRASTRUCTURE
• CENTER OF EXCELLENCE OF PMRI
•
MARS PMRI By: Dr. Mulyardi

TELAH HADIR DI BUMI PERSADA
INOVASI PEMBELAJARAN MATEMATIKA
MENGUNAKAN BUDAYA INDONESIA
PMRI ITU NAMANYA

DENGAN PMRI GURU JADI KREATIF
DENGAN PMRI SISWA MENJADI AKTIF
MANFAATKANLAH WAHAI PENDIDIK BANGSA
AGAR MATEMATIKA DISENANGI SISWA

REFF. PMRI CARA YANG BIJAKSANA
MENYAPA SISWA DENGAN RAMAH
PMRI SUATU INOVASI
MENGUNAKAN BUDAYA ANAK NEGERI

DENGAN PMRI SISWA JADI CERIA
DENGAN PMRI KELAS JADI GEMBIRA
HAI PENDIDIK BANGSA LAKSANAKAN SEGERA
DEMI PEMBELAJARAN MATEMATIKA

Kembali ke Reff.
Thank you for coming

E-mail : zulkardi@gmail.com
Blog : www.p4mri.net;
Facebook : facebook.com/zulkardiharun;
Mobile phone: +62-8127106777
REFLECTIONS FROM ENGLAND AND THE CAYMAN ISLANDS

Sue Hough, Paul Dickinson, Steve Gough, Yvette Solomon, Frank Eade
Manchester Metropolitan University

ICME conference
July 2016
BRIEF OUTLINE

• Dealing with clashing educational ideologies

• RME based projects in the UK

• RME based projects in The Cayman Islands
CLASHING IDEOLOGIES

- 1999 – a team from Manchester Metropolitan University visit the Netherlands

- 13 year old Dutch students are asked to say which is larger $\frac{2}{3}$ or $\frac{3}{4}$

- Use of a variety of strategies: mediating quantity, percentage, decimal, comparison to the whole, drawings
CLASHING IDEOLOGIES

- English teachers’ own knowledge of mathematics and their expectations of mathematics to be taught is often limited to an emphasis on the acquisition of procedures.

- Work out $\frac{6}{16} \times \frac{8}{18}$.

- How do you know you are right?
b) \[\frac{6}{16} \times \frac{8}{18} = \frac{48}{288} \text{ or } 5 \frac{44}{288} \]

\[6 \times 8 = 48 \]

\[\frac{16}{16} \times \frac{18}{18} = \frac{288}{288} \]

Because times top and time the bottom gives answer to a fraction multiplication.
b) \(\frac{6}{16} \times \frac{8}{18} \)

\[
\frac{6 \times 8}{16 \times 18} = \frac{48}{288} = \frac{24}{144} = \frac{12}{72} = \frac{6}{36} = \frac{1}{6}
\]

\[
16 \times 10 = 160
\]

\[
16 \times 8 = 80
\]

\[
6 \times 8 = 48
\]

\[
\frac{48}{288} = \frac{1}{6}
\]

I know because \(6 \times 8 = 48 \) and \(16 \times 18 = 288 \), and it cancels down to \(\frac{1}{6} \).
HOW DO YOU KNOW YOU ARE RIGHT?

‘I know it’s right because that’s how I was taught to do it’

‘I was taught this method and just accepted it’

‘I know they’re right because I’ve been doing it for years and have checked my answers’
HOW DO YOU KNOW YOU ARE RIGHT?

‘I wasn’t 100% sure I was right, this is a regurgitation of a procedural method’

‘I can’t think of why I am right’

‘I have no concept of what these answers mean in terms of the actual question, and no idea if they’re even sensible. If I made a mistake a wouldn’t notice’
100% used a procedure to answer

71% used a procedure to justify a procedure

0.5% used estimation

22.5% said they didn’t know why they were right.
CLASHING IDEOLOGIES

• Radical differences between RME and English education system in terms of:

• Student and teacher expectations about the nature of mathematics and mathematics classrooms

As seen in our

curriculum
textbook resources
classroom cultures
assessment systems
accountability structures
‘TEACHING TO THE TEST’

6 Here is a list of numbers.

11 8 11 14 11 15 13 14

(a) Find the mode.

(a)........................ [1]

(b) Find the range.

(b)........................ [1]

(c) Find the median.

- Under RME assessment problems should be:
- Accessible and worth solving
- Unfamiliar, giving opportunities for students to formulate their own constructions
- Facilitate ownership and decision making on the part of the student

(Van den Heuvel-Panhuizen, 2005)
RME TRIALS IN ENGLAND

Trial 1 – 2004 - 2007

Over 400 project students aged 11-14 across 12 schools

Project teachers taught using the ‘Mathematics in Context’ textbook series developed by the University of Wisconsin in collaboration with the Freudenthal Institute

Project teachers attended 6 days training per year, supported by Manchester Metropolitan University and the Freudenthal Institute
TRIAL 1 - OUTCOMES

• Similar performance for project and control students on traditional examination questions

• Performance on unfamiliar type problems was significantly better for project students compared with control (36% correct v 17% correct in the case of ‘lower attainment’ range)

• ‘Evidence that project pupils’ approach to problem solving changed and this influenced how they understood the mathematics’

(Searle and Barmby, 2012)
(b) Find the area of the shape shown below.

Show carefully how you worked it out.

I got this because $3 \times 2 \times 3 \times 4 = 48$ and the 1 divided by 4 because there are 4 numbers.
Questions 1 continued

(b) Find the area of the shape shown below.

Show carefully how you worked it out.

15 whole squares.

I divided the shape into squares and counted how many whole squares there was. There was 15. I then added pieces to other pieces to make them whole and I got 4 1/2. I added this to 15 so it was the area of 19 1/7.
TRIAL 1 – A DIFFERENT NOTION OF PROGRESS

- A shift from ‘doing something with the numbers’ to ‘making sense of the problem’

- A recognition of progress in understanding the concept of area as exemplified by the use of a ‘model of’ the situation and how this develops into a ‘model for’

 (Streefland 1985, 1993)

- An appreciation of the iceberg model and the ‘landscape of learning’

The formal

‘Model for’

RME – a different view of progress

‘Model of’

Context
RME TRIALS IN ENGLAND

Trial 2 – 2007 - 2010

Smaller scale, around 240 project students aged 14 – 16, across 10 schools

Project teachers taught using the ‘Making Sense of Maths’ resources developed at Manchester Metropolitan University in collaboration with the Freudenthal Institute

Project teachers attended 6 x 2 hour twilight training per year, on a voluntary basis, supported by Manchester Metropolitan University.
TRIAL 2 - OUTCOMES

• Similar performance for project and control students in National GCSE examinations.

• Performance on unfamiliar type problems was significantly better for project students compared with control in the middle to lower attainment range.

• Publication by Hodder Education of ‘Making Sense of Maths’ as a textbook series.
RME TRIALS IN ENGLAND

Trial 3: 2012 - 2016

Working with students aged 16 and over who have not gained the National GCSE examination to an acceptable standard.

Success rates for these re-sit students are traditionally very low (In 2012-2013 only 9.3% of students went onto improve their GCSE grade.)

(Department for Education, 2014)

Very short intervention, 12 hours on Number, 9 hours on Algebra, out of their 9 month resit course.
SMALL but significant gains for the project group on Number

For some students using a variety of contexts which led to use of the bar model helped them to see connections across elements of the curriculum

Some students used the bar model as an algorithmic strategy, rather than as a ‘model for ‘ making sense of a problem
PRE AND POST-TEST APPROACHES TO FINDING OF $\frac{5}{8}$ OF £600

4. Find $\frac{5}{8}$ of £600

£450
PRE AND POST-TEST APPROACHES TO FINDING SUSAN’S ORIGINAL CAR PRICE

7. a) Susan sold her car for £6820. This was 20% less than she paid for it. How much did she pay for the car?

\[600 + 600 = 1200 \]
\[80 + 80 = 160 \]
\[2 + 2 = 4 \]

\[1200 - 160 = £1040 \]

b) Do you think you are right? Explain.
PRE AND POST-TEST APPROACHES TO SHARING £140 IN THE RATIO 2 : 5

2. Pat and Julie share £140 in the ratio 2 : 5. How much money does Julie get?

£105 + £8.75 = £113.75

Julie will get £113.75

17.50 ÷ 2 = 8.75

√
TEACHER IMPACT

• ‘The students show much more confidence….much less of a correct/ incorrect environment compared to a traditional approach and so the students are not frightened to ‘have a go’ as much

• ‘They stopped asking ‘What is the point in this?’ They stopped saying ‘can we do something different?’ I stopped replying ‘you have to do it because you have an exam in it’ Energy levels were higher in the room, a lot more discussion took place
‘the underlying understanding being really important, so I’m pulled in two ways….I really like what you do and buy into it, and the other side of me is saying’dam with this group, I’ve still got to this, this and this, and when am I going to do it?’
RME BASED PROJECTS IN THE CAYMAN ISLANDS

• 2011, Frank Eade from MMU becomes Mathematics Advisor for the Cayman Islands

• Primary students in the Cayman Islands were expected to learn rules given to them by their teachers, many were behind, participated little in class and constantly asked for help, afraid to take mathematical risks

• Very little use of context, models or imagery. Even the context of money was not well understood.
RME BASED PROJECTS IN THE CAYMAN ISLANDS

• Introduced ‘Mathematics Recovery’ training (Wright et al, 2014). Extensive use of models such 10-frames, the 100 bead bar and arrays... but little use of contexts

• A group of Primary teachers were trained in use of the empty number line and how to use contexts as a point of entry
CAYMAN ISLANDS - OUTCOMES

- Increased awareness in students of how calculations like 91 – 37 can be represented on a number line

(In 2011, 16% of Year 6 could explain compared with 46% in 2013.)
CAYMAN ISLANDS - OUTCOMES

- Increased use of a range of informal strategies for division problems like $222 \div 3$, rather than following a procedure
CAYMAN ISLANDS - OUTCOMES

- At Secondary age group, under guidance from Frank, teachers began trialling the ‘Mathematics in Context’ textbooks.

- Pre and post-test mean scores for a 13 question test are shown below

<table>
<thead>
<tr>
<th></th>
<th>Pre-test mean</th>
<th>Post-test mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td>44%</td>
<td>45%</td>
</tr>
<tr>
<td>Set 2</td>
<td>14%</td>
<td>26%</td>
</tr>
<tr>
<td>Set 3</td>
<td>5%</td>
<td>15%</td>
</tr>
</tbody>
</table>
CAYMAN ISLANDS - OUTCOMES

- Students showed initiative using a range of solution strategies:

12. Kirks charge $11.99 for a 4kg bag of potatoes and $17.00 for a 6kg bag of the same type of potatoes. Which bag is better value? Explain your method.

This bag has less value because it is only split into two parts. The bag with six parts is a better value.
Where teachers receive substantial training in the use of RME, they experience significant shifts not only in the way they see mathematics but in the way they operate within their classrooms.

The latest version of an English curriculum does stress the need to develop mathematical reasoning and the ability to problem solve as well as procedural fluency.

National public examinations in England to include more problem solving with open ended questions set in real life contexts.

(OCR, 2014)
EXAMPLES WE HAVE TRIALLED...
The influence of RME on Belgian school mathematics

ICME 13, Hamburg, 24-31 July 2016
Thematic Afternoon: European Didactic Traditions - Netherlands

Dirk De Bock, KU Leuven (Belgium)
Papy and Freudenthal...
Mechanistic, Structural, Realistic

M

Belgium/the Netherlands/
...
≤ 1950s

R

the Netherlands/
≥ 1970s

S

Belgium/…/
1960s-1970s
In search for alternatives…

When evaluating the renewed mathematics education, we should not only compare with the old mathematics, but also with alternatives like the ones that are, e.g., developed in the Netherlands by Wiskobas. We need the courage to examine the alternatives thoroughly. (…) We opt for an alternative reform along the lines of the Wiskobas approach of the IOWO, complemented, however, with a strong emphasis on the social-societal aspect of mathematical world orientation.
Mathematics programs of the late 1990s

Mathematics in primary school should focus on mathematizing reality. It is therefore necessary to set mathematics education into a natural context.

Children learn to describe situations derived from their own living environment in the language of mathematics.

Mathematics starts from real problems, problems that are experienced as ‘real’ by the pupils themselves.
At the secondary level

Since 1984

1990

Strong inspiration from the HEWET cahiers (de Lange and Kindt), e.g. the idea of “conceptual mathematization”
Some topics: A true metamorphosis!

- **Exponential and logarithmic functions:** models for exponential (or cumulative) growth
- **Trigonometry:** models for periodic phenomena
- **Matrices:** modelling with “blocks of numbers”
- **Derivatives and integrals**
An Eclectic approach?

M R

S

Mathematics education in Belgium nowadays?
Realistic Mathematics Education
Some remarks by a critical friend

Cyril Julie
University of the Western Cape, South Africa
RME has demonstrated itself as a viable approach for incorporating some of its ideas in the state-mandated school mathematics curriculum in South Africa.

Electricity

Read the following extract from a local newspaper article and use the information together with the graph shown below to answer the questions that follow.
• Use the graph to describe how the electricity consumption changed over the 24 hour period.
• From the graph, which time of the day is the electricity consumption the highest? Why do you think so?
• Read the newspaper article above. When will be the cheapest tariff for electricity?
• Explain the difference between the electricity consumption from 06:00 to 08:00 and that from 10:00 to 12:00 on the graph.
• Do you think that it is practically possible for a household to lower their electricity payments with the new tariff structure? Why or why not?
• Use the slide given below to determine during which hour of the day the greatest change in electricity consumption occurred.
The broader South African school mathematics context

High-stakes mathematics examination at the end of 12-13 years schooling

Solve for x and y simultaneously:

\begin{align*}
y + 1 &= 2x \\
x^2 - xy + y^2 &= 7
\end{align*}

Given the quadratic sequence: $-1; -7; -11; p; \ldots$

3.1.1 Write down the value of p.

3.1.2 Determine the n^{th} term of the sequence.

3.1.3 The first difference between two consecutive terms of the sequence is 96. Calculate the values of these two terms.
Table 11.1: Overall achievement rates in Mathematics

<table>
<thead>
<tr>
<th>Year</th>
<th>No. wrote</th>
<th>No. achieved at 30% and above</th>
<th>% achieved at 30% and above</th>
<th>No. achieved at 40% and above</th>
<th>% achieved at 40% and above</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>225 874</td>
<td>121 970</td>
<td>54.0</td>
<td>80 716</td>
<td>35.7</td>
</tr>
<tr>
<td>2013</td>
<td>241 509</td>
<td>142 666</td>
<td>59.1</td>
<td>97 790</td>
<td>40.5</td>
</tr>
<tr>
<td>2014</td>
<td>225 458</td>
<td>120 523</td>
<td>53.5</td>
<td>79 050</td>
<td>35.1</td>
</tr>
<tr>
<td>2015</td>
<td>263 903</td>
<td>129 481</td>
<td>49.1</td>
<td>84 297</td>
<td>31.9</td>
</tr>
</tbody>
</table>

Improvement of these results a priority for schools, parents, politicians and higher education institutions.
Teacher: When I taught the stuff they could do it. When I saw the results I wonder whether I was teaching them.

Learner: When we did the work in class I understood and could do it, but in the examination it was as if I went blank

RME is low on incorporation of strategies and tactics to develop procedural and other fluencies to address what I call the “forget problem”
Operating with powers (I)

\[a \times a \times a \times b \times b \times c = a^3 \times b^2 \times c^1 = a^3b^2c \]

The **exponents** of \(a \), \(b \), and \(c \) are 3, 2 and 1.

(note: the exponent 1 is mostly not written)

With the exponents 3, 2 and 1 and the letters \(a \), \(b \) and \(c \) also can be made other products, for example: \(ab^3c^2 \).

There are six different products that one can make using \(a \), \(b \), \(c \) and the exponents 1, 2, 3.

- Write the other four products.
- Multiply the six products to each other.
 - The result can be written in the form \(\cdots a \cdots b \cdots c \cdots \)
 - Which exponents do you get?

Positive Algebra, Martin Kindt
education in Mathematics vs mathematics in Education

education in Mathematics

Induction into the ways mathematicians work and the practice of doing mathematics (Seymour Papert’s “Teaching children to be mathematician vs teaching them mathematics”)

mathematics in Education

Development and nurturing of the global and responsible citizen who has a sense of the contributions Mathematics, as part of the totality of humanity’s knowledge heritage, have made to the current human condition
RME low on “mathematics in Education”
Mathematics in general recreational matters low

Mathematics as metaphor to ‘story’ societal issues
Mathematics as backdrop to crime (and possibly other) novels

Hacking, AI, encryption, decryption, large prime numbers, etc
Global Information

Violence increased since the 50’s

Health increased since the 50’s

Better health contributes towards the increase in violence or vice-versa
Currently a father is 25 years older than his child. In seven years he will be 5 times as old as his child.

What is the father doing now?

<table>
<thead>
<tr>
<th>Years</th>
<th>Child</th>
<th>Father</th>
</tr>
</thead>
<tbody>
<tr>
<td>Now</td>
<td>P</td>
<td>$P + 25$</td>
</tr>
<tr>
<td>7 years later</td>
<td>$P + 7$</td>
<td>$P + 32$</td>
</tr>
</tbody>
</table>

$$5(P + 7) = P + 32$$
$$P = -\frac{3}{4} \text{ years}$$

Not strictly RME but Dutch
THANK YOU